Skip to main content

LINEST

Definition

Given partial data about a linear trend, calculates various parameters about the ideal linear trend using the least-squares method.

Sample Usage

Syntax

LINEST(known_data_y, [known_data_x], [calculate_b], [verbose])

  • known_data_y - The array or range containing dependent (y) values that are already known, used to curve fit an ideal linear trend.

    • If known_data_y is a two-dimensional array or range, known_data_x must have the same dimensions or be omitted.

    • If known_data_y is a one-dimensional array or range, known_data_x may represent multiple independent variables in a two-dimensional array or range. I.e. if known_data_y is a single row, each row in known_data_x is interpreted as a separated independent value, and analogously if known_data_y is a single column.

  • known_data_x - [ OPTIONAL - {1,2,3,...} with same length as known_data_y by default ] - The values of the independent variable(s) corresponding with known_data_y.

    • If known_data_y is a one-dimensional array or range, known_data_x may represent multiple independent variables in a two-dimensional array or range. I.e. if known_data_y is a single row, each row in known_data_x is interpreted as a separated independent value, and analogously if known_data_y is a single column.
  • calculate_b - [ OPTIONAL - TRUE by default ] - Given a linear form of y = m*x+b, calculates the y-intercept (b) ifTRUE. Otherwise, forces b to be 0 and only calculates the m values if FALSE, i.e. forces the curve fit to pass through the origin.

  • verbose - [ OPTIONAL - FALSE by default ] - A flag specifying whether to return additional regression statistics or only the linear coefficients and the y-intercept (default).

    • If verbose is TRUE, in addition to the set of linear coefficients for each independent variable and the y-intercept,LINEST returns

      • The standard error for each coefficient and the intercept,

      • The coefficient of determination (between 0 and 1, where 1 indicates perfect correlation),

      • Standard error for the dependent variable values,

      • The F statistic, or F-observed value indicating whether the observed relationship between dependent and independent variables is random rather than linear,

      • The degrees of freedom, useful in looking up F statistic values in a reference table to estimate a confidence level,

      • The regression sum of squares, and

      • The residual sum of squares.

See Also

TREND: Given partial data about a linear trend, fits an ideal linear trend using the least squares method and/or predicts further values.

LOGEST: Given partial data about an exponential growth curve, calculates various parameters about the best fit ideal exponential growth curve.

GROWTH: Given partial data about an exponential growth trend, fits an ideal exponential growth trend and/or predicts further values.

 

In order to use the LINEST formula, start with your edited Excellentable:

 

 

 

Error.

User does not have sufficient privileges to access this Content
Learn More

JavaScript errors detected

Please note, these errors can depend on your browser setup.

If this problem persists, please contact our support.